# Stereospecific Synthesis of (+)- and (-)-Cyclooctenone Derivatives Using a Ring Expansion Reaction with $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ and CsF 

Alice Emi Imai, Yoshihiro Sato, Mayumi Nishida, and Miwako Mori*<br>Contribution from the Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan

Received September 3, 1998


#### Abstract

Novel synthesis of an eight-membered compound by the ring expansion reaction of a two-carbon unit was developed using the stannyl anion generated from $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ and CsF in DMF. cis- and transcyclooctenone derivatives were synthesized from cyclohexanone derivatives having vinyl iodide in a tether by treatment with $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ and CsF in DMF in a stereospecific manner. The trans-cyclooctenone derivative was isomerized to the cis-isomer in the presence of $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ and CsF . It is known that the trans-eightmembered ring is an asymmetric compound. Using this procedure, $(+)$ - and ( - )-trans-cyclooctenone derivatives could be synthesized from the corresponding optically active cyclohexanone derivatives.


Among medium-sized cyclic compounds, the eight-membered ones are the most difficult to construct due to the high degree of ring strain and transannular interactions presented by these molecules. They occur widely in nature, particularly in higher plants and marine organisms, and many cyclooctanoid natural products have been found to exhibit interesting biological activities. Precapnelladiene, ${ }^{1 \mathrm{~b}}$ dactylol, ${ }^{1 \mathrm{c}}$ and poitediol ${ }^{1 \mathrm{~d}}$ (Figure 1) are examples of sesquiterpenes isolated from marine sources that contain this ring size in their skeletons, and they have been the target of several synthetic works. ${ }^{1}$

Some examples of ring expansion from six- to eightmembered rings are described in the literature, most of which apply to the Claisen ${ }^{2}$ or oxy-Cope rearrangement. ${ }^{3}$ We planned the construction of an eight-membered ring by a ring expansion reaction using the stannyl anion generated from $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}{ }^{4,5}$ (1) and CsF. ${ }^{6}$ Reaction of $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ in the presence of $\mathrm{R}_{4}{ }^{-}$

[^0]
precapnelladiene

dactylol

poitediol

Figure 1.
NX or CsF produced a stannyl anion ${ }^{7}$ via hypervalent silicate, which is a useful tool in synthetic organic chemistry (eq 1). ${ }^{6}$

$$
\mathrm{Me}_{3} \mathrm{SiSnBu}_{3} \xrightarrow[\text { or CsF }]{\mathrm{R}_{4} \mathrm{NX}}\left[\begin{array}{c}
\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}  \tag{1}\\
X
\end{array}\right]^{-} \mathrm{R}_{4} \mathrm{~N}^{+}
$$

Ring Expansion to Cyclooctadiones from Cyclohexadiones Using $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ and $\mathbf{F}^{-}$. Reaction of cyclohexadione derivative Ia with the stannyl anion should produce vinyl anion, ${ }^{6}$ which reacts with the carbonyl group intramolecularly to produce the four-membered product IIa (Scheme 1). Then the ring opening of IIa would give the two-carbons-enlarged ring III. ${ }^{8}$
(6) (a) Mori, M.; Kaneta, N.; Isono, N.; Shibasaki, M. Tetrahedron Lett. 1991, 32, 6139. (b) Mori, M.; Kaneta, N.; Isono, N.; Shibasaki, M. J. Organomet. Chem. 1993, 455, 255; (c) 1994, 464, 35. (d) Mori, M.; Isono, N.; Kaneta, N.; Shibasaki, M. J. Org. Chem. 1993, 58, 2972. (e) Mori, M.; Hashimoto, A.; Shibasaki, M. J. Org. Chem. 1993, 58, 6503. (f) Honda, T.; Mori, M. Chem. Lett. 1994, 1013. (g) Sato, H.; Isono, N.; Okamura, K.; Date, T.; Mori, M. Tetrahedron Lett. 1994, 35, 2035. (h) Kinoshita, A.; Mori, M. Chem. Lett. 1994, 1475. (i) Isono, N.; Mori, M. J. Org. Chem. 1995, 60, 115. (j) Isono, N.; Mori, M. Tetrahedron Lett. 1995, 36, 9345. (k) Isono, N.; Mori, M. Main Group Met. Chem. 1996, 19, 277. (1) Sato, H.; Isono, N.; Miyoshi, I.; Mori, M. Tetrahedron 1996, 52, 8143. (m) Isono, N.; Mori, M. J. Org. Chem. 1996, 61, 7867.
(7) Stannyl anion prepared from organotin halides: (a) Kuivila, H. G.; Considine, J. L.; Kennedy, J. D. J. Am. Chem. Soc. 1972, 94, 7206. (b) Kitching, W.; Olszowy, H.; Waugh, J.; Doddrel, D. J. Org. Chem. 1978, 43, 898. (c) Blake, D.; Coates, G. E.; Tate, J. M. J. Chem. Soc. 1961, 618. (d) Tamborsky, C.; Ford, F. E.; Lehn, W. L.; Moore, G. J.; Soloski, E. J. J. Org. Chem. 1962, 27, 619. (e) Tamborsky, C.; Ford, F. E.; Soloski, E. J. J. Org. Chem. 1963, 28, 181. Stannyl anion prepared from hexaorganoditins: (f) Still, W. C. J. Am. Chem. Soc. 1977, 99, 4836. (g) J. Am. Chem. Soc. 1978, 100, 1481. (h) Quintard, J. P.; Hauvette-Frey, S.; Pereyre, M. Bull. Soc. Chim. Belg. 1978, 87, 505. Stannyl anion prepared from organotin hydrides: (i) Corriu, R. J. P.; Guerin, C. J. Organomet. Chem. 1980, 197, C19.

Scheme 1. Our Plan for the Ring Expansion Reaction Using $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$


Scheme 2. Synthesis of the Starting Material ${ }^{a}$

${ }^{a}$ Conditions: (i) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 45 \%$. (ii) $\mathrm{MaI}, \mathrm{TMSCl}, \mathrm{CH}_{3} \mathrm{CN}$, $35 \%$. (iii) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$, quant. (iv) $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, NaI, DMF.

Scheme 3


To examine the ring expansion reaction according to our plan, the starting cyclohexadione derivatives 6 were prepared as shown in Scheme 2. The vinyl iodide 3b as the side chain was prepared from 2-butyne-1,4-diol (2a). The stereochemistry of 3b was determined by an NOE experiment. Condensation of 4 or $\mathbf{5}$ with $\mathbf{3 b}$ or $\mathbf{3 c}$ proceeded smoothly to give $\mathbf{6 a}-\mathbf{d}$, having a vinyl iodide in a tether.

When a DMF solution of cyclohexadione $\mathbf{6 a}, 2$ equiv of $\mathrm{Me}_{3}-$ $\mathrm{SiSnBu}_{3}$, and 2 equiv of CsF was stirred at room temperature for 1.5 h , the expanded cyclooctadione 7a was obtained in $24 \%$ yield along with the corresponding Michael adduct $\mathbf{8 a}$ in $17 \%$ yield (Scheme 3). As a byproduct, dehalogenation product $9 \mathbf{a}$ was formed in $25 \%$ yield. Similar results were obtained in the ring expansion of cyclohexanediones $\mathbf{6 b}-\mathbf{d}$, as shown in Table 1. Compounds $\mathbf{6 c}$ and $\mathbf{6 d}$, having a longer side chain, gave good results (runs 3 and 4).

These results indicate that the ring expansion reaction of a two-carbon unit was realized from cyclohexadione 6, having vinyl iodide as a side chain, using $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ and CsF and that an eight-membered product was formed.
(8) (a) Grob, C. A.; Baumann, W. Helv. Chim. Acta 1955, 38, 594. (b) Grob, C. A. Angew. Chem., Int. Ed. Engl. 1969, 8, 535. (c) Schreiber, S. J. Am. Chem. Soc. 1980, 102, 6163. (d) Mahajan, J. R.; de Araujo, H. C. Synthesis 1981, 49.

Table 1. Reaction of $\mathbf{2}$ with $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ and CsF

|  |  |  |  | yield (\%) |  |  |  |
| :---: | :---: | :--- | :--- | :---: | :---: | :---: | :---: |
| run | substrate | $\mathrm{R}^{1}$ | $\mathrm{R}^{2}$ |  | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| 1 | $\mathbf{6 a}$ | Me | H | 24 | 17 | 25 |  |
| 2 | $\mathbf{6 b}$ | H | H | 39 | 3 | 33 |  |
| 3 | $\mathbf{6 c}$ | Me | $\mathrm{CH}_{2} \mathrm{OAc}$ | 38 |  | 16 |  |
| 4 | $\mathbf{6 d}$ | H | $\mathrm{CH}_{2} \mathrm{OAc}$ | 58 |  | 34 |  |

## Scheme 4



Scheme 5. Synthesis of Vinyl Iodide


Ring Expansion to Cycloalkanones Using $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ and CsF. Our plan was slightly modified to increase the yield of the expanded product because the reaction of Ia with $\mathrm{Me}_{3^{-}}$ $\mathrm{SiSnBu}_{3}$ and CsF is reversible and the yield of the dehalogenation product increases, as shown in Scheme 4. If the leaving group is placed at the 3-position of cyclohexanone Ib, having a vinyl group at the side chain, Ib would give cycloalkanone IIIb via IIb by treatment with $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ and CsF .

At first, we examined whether cyclopentanone derivative 12 could be expanded to cycloheptenone derivative $\mathbf{1 3}$ or $\mathbf{1 5}$. For the synthesis of cyclopentanone derivatives, cyclopentadione $\mathbf{1 0}$ was reduced with DIBAL-H at $-78{ }^{\circ} \mathrm{C}$ to give cis- $\mathbf{1 1}$ and trans-11 in $61 \%$ and $10 \%$ yields, respectively (Scheme 5). In this report, cis and trans refer to the relative positions of the mesylate and the side chain containing the vinyl iodide. The stereochemistry of cis- $\mathbf{1 1}$ was determined by an NOE experiment. Mesylation of each isomer proceeded smoothly to provide cis-12 and trans- $\mathbf{1 2}$ in $76 \%$ and $79 \%$ yields, respectively.
When the five-membered substrate cis-12 was treated with 4 equiv of $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ and 4 equiv of $\mathrm{CsF}^{9}$ in DMF at room temperature, the Michael adduct $\mathbf{1 3}$ was obtained in $25 \%$ yield along with dehalogenation product trans-14, which underwent further substitution of the mesyl group by the stannyl anion in
(9) Because of the low molecular weight of the seven-membered $\alpha, \beta$ unsaturated ketone $\mathbf{1 5}$ formed, an excess amount of $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ and CsF was used in order to convert it to the corresponding Michael addition product 13.

$c i s-17 a$

trans-17a

Figure 2.
Scheme 6. Reaction of Cyclopentenes with $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ and CsF

$25 \% 13$


$24 \%$ trans- 14


Scheme 7


Scheme 8. Synthesis of the Starting Vinyl Iodide

$24 \%$ yield (Scheme 6). On the other hand, the reaction of trans12 did not give any expanded cycloheptenone, and only a substitution product, cis-14, was isolated in $51 \%$ yield. However, the result of an NOE experiment and the spectral data of cis-14 revealed that these two products (trans- and cis-14) were epimers. This indicates that substitution of the mesyloxy group by the stannyl group occurred with inversion of configuration. This is in good agreement with the results obtained by San Filippo and Silberman ${ }^{10 a}$ and Ashby and DePriest, ${ }^{10 \mathrm{~b}}$ who verified that the substitution of optically active tosylate by trimethylstannylsodium or -lithium occurred with complete inversion of configuration by an $\mathrm{S}_{\mathrm{N}} 2$ pattern, as shown in Scheme 7.

Next, we tried to synthesize an eight-membered compound by a ring expansion reaction. The starting cyclohexanones cisand trans- $\mathbf{1 7}$ were prepared by reduction of cyclohexadione derivative 6 with $\mathrm{NaBH}_{4}$ followed by mesylation (Scheme 8). The stereochemistry was determined by the NOE experiments on cis- and trans-17a (Figure 2), and we designated cis and trans as the relative positions of the mesylate and the side chain containing the vinyl iodide. In the case of the reduction of $\mathbf{6 b}$ with $\mathrm{NaBH}_{4}$, only a small amount of trans- $\mathbf{1 6 b}$ was obtained (Table 2, run 2). Thus, cis-16b was converted into trans-16b using Mitsunobu's reaction (Scheme 9). ${ }^{11}$

When a DMF solution of cis-17a was stirred in the presence of $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ ( 3 equiv) and CsF (3 equiv) at room temperature for 2 h , cis-19a was obtained in $86 \%$ yield (Table 3, run 1;

[^1]Scheme 9


## Scheme 10



Scheme 10). When the solvent was changed from DMF to THF, cis-18a was obtained in $70 \%$ yield (run 2). Since it was clear that cis-19a was obtained from cis-18a and the stannyl anion, cis-17a was treated with 1.5 equiv of $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ and CsF in DMF at room temperature to give cis-18a as a main product (run 3). On the other hand, when the trans-isomer 17a was treated in a similar manner, cis-19a was obtained in $36 \%$ yield as a main product, and trans-isomer 18a was obtained in $1 \%$ yield (run 4). A slight excess of $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ and CsF gave trans-18a in 33\% yield from trans-17a (run 5). It is interesting that the trans-eight-membered ring, which is the smallest transcycloalkene isolable at room temperature, ${ }^{12}$ was obtained under these reaction conditions. The stereochemistry of each isomer, cis-18a and trans-18a, was determined by NOE experiments. The ${ }^{1} \mathrm{H}$ NMR spectra of cis-18a at room temperature showed broad peaks, but those of trans-18a appeared as sharp signals. The result of a lower-temperature experiment $\left(-50^{\circ} \mathrm{C}\right)$ conducted on cis-18 indicates that these peaks are clearly sharp ( ${ }^{1} \mathrm{H}$ NMR spectra are contained in Supporting Information).

The reactions of various cyclohexanone derivatives 17 with $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ and CsF were examined. When cis-17b was treated with $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ (3 equiv) and CsF (3 equiv) in DMF in a similar manner, cis-18b and cis-19b were obtained in $9 \%$ and 49\% yields, respectively. In a similar treatment of trans-17b with $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ and CsF, trans-18b was obtained as a main product (run 7). Both cis-17c and trans-17c were reacted with $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ (2 equiv) and CsF (2 equiv) in DMF to give cis18c and trans-18c in yields of $73 \%$ and $41 \%$, respectively (runs 8 and 9). In all the reactions of trans- $\mathbf{1 7}$ with $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ and CsF, no trans- $\mathbf{1 9}$ was obtained, and cis- $\mathbf{1 9}$ and trans- $\mathbf{1 8}$ were isolated. Although it is not clear at this stage why cis-19a was obtained from trans-17a (run 4), the reaction is thought to proceed in a stereospecific manner (runs 3 and 5). When the leaving group and the cleaving carbon-carbon bond in the intermediary four-membered compound $\mathbf{V}$ generated from cis-

[^2]Table 2. Reduction of 6 with $\mathrm{NaBH}_{4}$ Followed by Mesylation

| run | substrate | cis-16 |  |  | cis-17 yield (\%) | trans-16 |  |  | trans-17 yield (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{R}^{1}$ | $\mathrm{R}^{2}$ | yield (\%) |  | $\mathrm{R}^{1}$ | $\mathrm{R}^{2}$ | yield (\%) |  |
| 1 | 6 a | Me | H | 30 | 90 | Me | H | 67 | 87 |
| 2 | 6 b | H | H | 70 | 95 | H | H | 8 | quant |
| 3 | 6 c | Me | $\mathrm{CH}_{2} \mathrm{OAc}$ | 36 | 90 | Me | $\mathrm{CH}_{2} \mathrm{OAc}$ | 61 | 96 |

Table 3. Reaction of cis- and trans- $\mathbf{1 7}$ with $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ and $\mathrm{CsF}^{a}$

| run | substrate | $\mathrm{R}^{1}$ | $\mathrm{R}^{2}$ | amount of 1 (equiv) | solvent | yield (\%) ${ }^{\text {b }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\overline{c i s-18}$ | cis-19 | trans-18 |
| 1 | cis-17a | Me | H | 3 | DMF | 0 | 86 | 0 |
| 2 | cis-17a | Me | H | 3 | THF ${ }^{\text {c }}$ | 70 | 0 | 0 |
| 3 | cis-17a | Me | H | 1.5 | DMF | 42 | 4 | 0 |
| 4 | trans-17a | Me | H | 3 | DMF | 0 | 36 | 1 |
| 5 | trans-17a | Me | H | 1.5 | DMF | 0 | 0 | 33 |
| 6 | cis-17b | H | H | 3 | DMF | 9 | 49 | 0 |
| 7 | trans-17b | H | H | 3 | DMF | 0 | 4 | 32 |
| 8 | cis-17c | Me | $\mathrm{CH}_{2} \mathrm{OAc}$ | 2 | DMF | 73 | 0 | 0 |
| 9 | trans-17c | Me | $\mathrm{CH}_{2} \mathrm{OAc}$ | 2 | DMF | 0 | 0 | 41 |

${ }^{a}$ Reaction was carried out at room temperature in DMF. ${ }^{b}$ Isolated yield. ${ }^{c}$ Reaction was carried out at $0{ }^{\circ} \mathrm{C}$.

## Scheme 11







17a are placed in antiperiplanar positions, the ring opening reaction is thought to proceed as shown in Scheme 11. On the other hand, trans-17a would proceed via $\mathbf{V}^{\prime}$, which satisfies the antiperiplanar positions required for synchronous fragmentation. ${ }^{8}$ This mechanism can equally account for nonformation of a ringexpanded product from trans-12. The bicyclic intermediate VI formed from cyclopentanone derivative cis- $\mathbf{1 2}$ gave a ring expansion product, although the yield was low. However, transisomer $\mathbf{1 2}$ did not give the ring expansion product. The $\mathrm{C}-\mathrm{OMs}$ bond of intermediate $\mathbf{V I}^{\prime}$ is not placed at an antiperiplanar position in relation to the ring junction bond that will be cleaved if the bicyclic intermediate $\mathbf{V I}^{\prime}$ is formed. cis-Eight-membered cyclic compounds occur widely in nature, and cis-18c is thought to be a key intermediate for the synthesis of precapnelladine, dactylol, or poitediol.

To investigate why cis-19 was obtained from trans-17 in the presence of an excess amount of $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ and CsF, transisomer 18a was treated with 3 equiv of $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ and CsF (Scheme 12). As a result, trans-19a and cis-19a were obtained in $17 \%$ and $51 \%$ yields, respectively. The former product, trans19a, was further treated in a similar manner to give cis-19a in high yield. These results show that isomerization of trans to cis occurs, although it is not clear whether the isomerization is caused by the stannyl anion or radical. ${ }^{13}$

## Scheme 12



Synthesis of the Optically Active trans-Cyclooctenone Derivative. It is known that the trans-cyclooctene derivative is an asymmetric compound, ${ }^{14}$ and it has attracted interest on account of its strained structure and conformation. There have been few reports on its synthesis, ${ }^{15}$ and reports are even more scarce with respect to chiral forms. ${ }^{16}$ Thus, we planned to prepare $(+)$ - and ( - -trans- $\mathbf{1 8}$ from $(+)$ - and $(-)$-trans- $\mathbf{1 7}$, using this stannyl anion-promoted stereospecific ring expansion reaction (Scheme 13). For the synthesis of chiral trans-18, we chose $( \pm)$-trans- $\mathbf{1 7} \mathbf{c}$ as the starting material, and the resolution of $( \pm)$ -trans-16c was examined.

Various attempts were made to get the optically pure $(+)$ or (-)-trans-16, and we were able to separate trans-20 and

[^3]Scheme 13. Synthesis of Optically Active trans-Cyclooctenone

$(+)$ or (-)-17

trans-18
or

ent-trans-18

Scheme 14


Scheme $\mathbf{1 5}^{a}$

${ }^{a}$ Conditions: (i) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$. (ii) TBAF . (iii) $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{Py}$. (iv) MsCl , $\mathrm{Et}_{3} \mathrm{~N}$. (v) $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$, CsF.
trans-20', obtained from ( $\pm$ )-trans-16e and ( $R$ )- $O$-acetylmandelic acid, respectively, by chromatography on silica gel, whose diastereomeric excesses are $100 \%$ (Scheme 14). Each isomer was converted into trans-17c and trans-17c', respectively, which were treated with $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ and CsF (Scheme 15). Unfortunately, the $[\alpha]_{\mathrm{D}}$ values of $(+)$-trans-18c and ( - )-trans-18c were low and not the same. Back on the synthetic route, an examination by HPLC revealed that trans-17c and $\mathbf{- 1 7} \mathbf{c}^{\prime}$ were almost racemized ( $37 \%$ and $7 \%$ ee, respectively), despite the separation of the diastereomeric pair trans-20 and trans-20' in $100 \%$ de. During the conversion of trans- $\mathbf{1 6}$ or $\mathbf{- 1 6}$ to trans $\mathbf{- 1 7}$ or $\mathbf{- 1 7}$, oxetane VII would be partially formed, and this would

## Scheme 16



Scheme $\mathbf{1 7}^{a}$

${ }^{a}$ Conditions: (i) $\mathrm{AcOH}-\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$, (3:1:1), rt, 5 h . (ii) $\mathrm{Ac}_{2} \mathrm{O}$, DMAP, py, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 1 h . (iii) $\left(\mathrm{TMSOCH}_{2}\right)_{2}$, TMSOTf, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt. (iv) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$, rt, 2.5 h . (v) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$. (vi) $\mathrm{FeCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt.
be followed by a hydride shift to give ent-17c, as shown in Scheme 16.

Thus, we changed the synthetic route of trans-17c to avoid racemization. Namely, the carbonyl group should be protected until the hydroxy group is converted into the mesyloxy group. After the separation of the diastereomeric mixture of trans-20 and -20', we attempted ketalization of trans-20, but it proceeded in a low yield. However, replacement of the TBDMS group by an acetyl group gave a good result. That is, desilylation of trans20 afforded the primary alcohol trans-22, which was acetylated to give trans-23 in 98\% yield (Scheme 17). The ketalization of $23{ }^{17}$ followed by hydrolysis gave (-)-trans-25, which was monoacetylated to give (-)-trans-26. Then secondary alcohol was mesylated to give the protecting starting material ( - )-trans27. The best condition for deketalization was the reaction with $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature, ${ }^{18}$ which resulted

[^4] 1357.

## Scheme $\mathbf{1 8}^{a}$


${ }^{a}$ Conditions: (i) (+)-MTPA, DCC, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 3 days, $67 \%$. (ii) ( - )-MTPA, DCC, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 3$ days, $48 \%$.

## Scheme $19^{a}$


(+)-trans-17c
$87 \%$ ee
$[\alpha]_{\mathrm{D}}-285.8$ ( c 1.17. $\mathrm{CHCl}_{3}$ )
${ }^{a}$ Conditions: (i) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$. (ii) TBAF . (iii) $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{Py}$. (iv) $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$, CsF.
in $97 \%$ yield of ( + )-trans- $\mathbf{1 7 c}$ after 3 h . In a similar manner, trans-20' was converted into ( - -trans- $\mathbf{1 7} \mathbf{c}$ in high yield. An HPLC analysis of the final substrate (+)- and ( - -trans 17c ( $89 \%$ and $87 \%$ ee, respectively) indicated that the protection of the carbonyl group as the ketal before the mesylation step substantially, but not completely, prevented racemization. The mechanism for this process is unclear.

The absolute configuration of (-)-trans-26, and consequently of ( + )-trans-17c, was determined as $S$ by the improved Mosher's method developed by Kusumi et al. ${ }^{19}$ utilizing the MTPA esters of (-)-trans-26 (Scheme 18; Figure 3).

Treatment of $(+)$-trans-17c and (-)-trans-17c with $\mathrm{Me}_{3}-$ $\mathrm{SiSnBu}_{3}$ and CsF in DMF at room temperature for 3 h gave $(-)$-trans-18c and (+)-trans-18c in yields of $30 \%$ and $31 \%$, respectively (Scheme 19). The $[\alpha]_{\mathrm{D}}$ values for them are $-285.8^{\circ}$ (c $1.17, \mathrm{CHCl}_{3}$ ) and $+292.7^{\circ}$ (c $0.98, \mathrm{CHCl}_{3}$ ), respectively). Their CD spectra, shown in Figure 4, strongly suggest that they are enantiomeric isomers. Thus, we succeeded in the syntheses of $(+)$ - and $(-)$-trans-cyclooctenone derivatives 17 c in optically active forms using a ring expansion reaction with $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ and CsF.

In conclusion, a novel synthesis of an eight-membered compound from cyclohexanone derivatives having vinyl iodide in a tether was developed by the ring expansion reaction of a two-carbon unit using the stannyl anion generated from $\mathrm{Me}_{3}-$ $\mathrm{SiSnBu}_{3}$ and CsF. The reaction proceeded in a stereospecific manner, and cis- and trans-cyclooctenone derivatives were obtained. It is interesting that the trans-eight-membered ring, which is the smallest trans-cycloalkene isolable at room temperature, was obtained under these reaction conditions, and

[^5]

Figure 3.


Figure 4.
that trans-cyclooctene was isomerized to cis-cyclooctene in the presence of $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ and CsF in DMF. It is known that the trans-cyclooctene derivative is an asymmteric compound. There have been few reports on its synthesis as a chiral form. We succeeded in the synthesis of $(+)$ - and ( - )-trans-cyclooctenone derivatives from the corresponding optically active $(-)$-and ( + )-trans-cyclohexanone derivatives.

## Experimental Section

General. All manipulations were performed under an argon atmosphere unless otherwise mentioned. All solvents and reagents were purified when necessary using standard procedures. Column chromatography was performed on silica gel $60(70-230$ mesh, $60 \AA$ ), and flash chromatography was performed on silica gel 60 (230-400 mesh, $60 \AA$ ) using the indicated solvent. Melting points are uncorrected. Flash column chromatography was performed on silica gel 60 (Merck, 230400 mesh) using the identical solvent.

General Procedure for Ring Expansion Reaction. To a solution of cyclohexanone derivative ( 1 equiv) and CsF (3 equiv) was added $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ (3 equiv) in DMF at $0{ }^{\circ} \mathrm{C}$, and the solution was stirred at room temperature for several hours. The reaction was monitored by TLC. To this solution was added aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the aqueous layer was extracted with ethyl ether. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography on silica gel to give the eightmembered product.

Ring Expansion to Cyclooctadione. 1,1,6-Trimethyl-4-meth-ylidene-3,7-cyclooctanedione (7a), 1,1,6-Trimethyl-4-(tributyl-stannyl)methyl-3,7-cyclooctanedione (8a), and 2,5,5-Trimethyl-2-(2-propenyl)-1,3-cyclohexanedione (9a). Following the general procedure for the ring expansion, $165 \mathrm{mg}(0.52 \mathrm{mmol})$ of the diketone 6a, upon reaction with $0.36 \mathrm{~mL}(1.03 \mathrm{mmol})$ of $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ and 156.5 $\mathrm{mg}(1.03 \mathrm{mmol})$ of CsF in 3.5 mL of DMF, afforded, after 2 h of reaction at room temperature, $39.5 \mathrm{mg}(17 \%)$ of the Michael adduct $\mathbf{8 a}, 25 \mathrm{mg}(25 \%)$ of the dehalogenated product 9a, and $24 \mathrm{mg}(24 \%)$ of the $\alpha, \beta$-unsaturated cyclooctanedione $7 \mathbf{a}$. These products were purified by silica gel column chromatography (hexane/EtOAc 20:1, 10: 1; 8:1 as gradient elution). 7a: IR (neat) 2960, 2928, 2870, $1698 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.98(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~d}$, $J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=9.4,14.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.48(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.62-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=4.3,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $6.12(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 15.63,29.32,29.81$, $34.92,36.79,50.48,50.72,50.87,126.35,145.19,200.68,212.40 ; \mathrm{MS}$ $m / z 194\left(\mathrm{M}^{+}\right), 179,166,110,95,83,67$; EI-HRMS $m / z$ calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$ 194.1307, found 194.1307. 8a: IR (neat) 2956, 2924, 2870, $1702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.76(\mathrm{dd}, J=9.4,12.9 \mathrm{~Hz}, 1 \mathrm{H})$, $0.82-0.90(\mathrm{~m}, 15 \mathrm{H}), 0.97(\mathrm{dd}, J=6.0,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.07(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.27-1.32(\mathrm{~m}, 6 \mathrm{H}), 1.43-$ $1.48(\mathrm{~m}, 6 \mathrm{H}), 2.02$ (ddd, $J=3.3,6.8,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~d}, J=$ $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{ddd}, J=3.6,10.1$, $15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.62$ $(\mathrm{d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 9.52,12.22,13.62,14.79$, $27.33,28.24,29.01,31.66,35.80,36.42,46.48,48.25,49.33,50.04$, 211.73, 212.63; ${ }^{119} \mathrm{Sn} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-7.7 ; \mathrm{MS} \mathrm{m} / z 486\left(\mathrm{M}^{+}\right), 429$, 251, 177; EI-HRMS m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{46} \mathrm{O}_{2} \mathrm{Sn} 486.2520$, found 486.2542. 9a: IR (neat) 2956, 2928, 1726, $1696 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~d}, J=6.2$ $\mathrm{Hz}, 2 \mathrm{H}), 2.49(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 2 \mathrm{H})$, 5.05-5.09 (m, 2 H), 5.54-5.62 (m, 1 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 27.43$, 27.94, 29.24, 30.62, 41.51, 51.66, 64.25, 119.29, 132.02, 209.45; MS $m / z 194\left(\mathrm{M}^{+}\right), 149,110,83$; EI-HRMS $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$ 194.1307, found 194.1300.

4-Methyl-2-methylidene-1,5-cyclooctanedione (7b), 4-Methyl-2-(tributylstannyl)methyl-1,5-cyclooctanedione (8b), and 2-Methyl-2-(2-propenyl)-1,3-cyclohexanedione (9b). 7b: 39\% yield; IR (neat) 2928, $1698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.09(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.91-$ $2.11(\mathrm{~m}, 3 \mathrm{H}), 2.42-2.77(\mathrm{~m}, 5 \mathrm{H}), 3.00(\mathrm{ddd}, J=0.8,4.3,14.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.33$ (br s, 1 H ), $6.02(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$; MS m/z $166\left(\mathrm{M}^{+}\right)$, 127; EI-HRMS m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$ 166.2188, found 166.2190 . 8b: $3 \%$ yield; IR (neat) $2956,2926,1706 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $0.75-1.05(\mathrm{~m}, 18 \mathrm{H}), 1.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.58(\mathrm{~m}, 13 \mathrm{H})$, $1.90-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.55-$ $2.75(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.54,11.71,13.65,14.97,25.41$, $27.57,29.12,36.97,38.24,39.14,45.06,47.89,214.62,215.56 ; \mathrm{MS}$ $\mathrm{m} / \mathrm{z} 458\left(\mathrm{M}^{+}\right), 401,251,235,177$; EI-HRMS $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{O}_{2^{-}}$ Sn 458.2187, found 458.2197. 9b: $33 \%$ yield; IR (neat) 3734,2964 , $1726,1696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.79-2.08(\mathrm{~m}, 2$ H), 2.52 (br d, 2 H ), 2.62-2.67 (m, 4 H), 5.06 (br d, 2 H), $5.49-5.65$ (m, 1 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 17.44,19.49,38.12,41.22,65.12,119.09$, 132.20, 209.75; MS m/z $166\left(\mathrm{M}^{+}\right), 127$; EI-HRMS $m / z$ calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$ 166.2188, found 166.2180 .
(Z)-1,1,6-Trimethyl-4-acetoxyethylidene-3,5-cyclooctanedione (7c): $38 \%$ yield; IR (neat) 2962, 2936, 1738, 1702, $1678 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 2.07$ $(\mathrm{s}, 3 \mathrm{H}), 2.27(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ $(\mathrm{dd}, J=9.4,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~d}, J=$ $12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=4.2,14.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.93(\mathrm{dd}, J=4.6,17.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dd}, J=5.6,17.3 \mathrm{~Hz}, 1 \mathrm{H})$, 5.93 (br t, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 15.61,20.93,29.41$, $29.92,34.97,37.83,50.83,50.86,51.89,63.94,137.76,141.29,170.85$, 202.11, 212.42; FAB-MS m/z. $267\left(\mathrm{M}^{+}+1\right), 207,154,136 ;$ FABHRMS $m / z$ calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{4}\left(\mathrm{M}^{+}+1\right)$ 267.1596, found 267.1567.
(Z)-4-Methyl-2-acetoxyethylidene-1,5-cyclooctanedione (7d) and (E)-2-Methyl-2-[(4-acetoxy)-2-butenyl]-1,3-cyclohexanedione (9d). 7d: 58\% yield; IR (neat) 2968, 2934, 2872, 1740, 1704, 1680, 1232 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.06(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.95-2.02(\mathrm{~m}$,
$2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.43-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.63(\mathrm{~m}, 3 \mathrm{H}), 2.69-$ $2.75(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=4.2,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=5.3 \mathrm{~Hz}$, $2 \mathrm{H}), 5.83(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 15.32,21.32$, $25.13,37.96,39.90,41.20,49.32,63.96,138.32,139.56,171.27,205.07$, 214.98; MS m/z $238\left(\mathrm{M}^{+}\right), 107,178,43$; EI-HRMS m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} 238.1205$, found 238.1230. 9d: $34 \%$ yield; IR (neat) 2940 , 2360, 2342, 1736, 1712, $1696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.22(\mathrm{~s}, 3$ H), $1.86-1.97(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.58-2.65(\mathrm{~m}, 4 \mathrm{H}), 4.44(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.51(\mathrm{ddd}, J=7.0$, $7.0,15.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.57 (ddd, $J=5.7,5.7,15.5 \mathrm{~Hz}, 1 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 17.36,20.49,20.85,38.25,39.01,64.36,64.84,128.60$, 129.09, 170.62, 209.70; MS m/z $238\left(\mathrm{M}^{+}\right), 178,127,43$; EI-HRMS $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{2}\left(\mathrm{M}^{+}-\mathrm{OAc}\right)$ 179.1072, found 179.1101 .

4-Methyl-2-(tributylstannyl)methyl-4-cyclohepten-1-one (13) and ( $2 S^{*}, 3 R^{*}$ )-2-Methyl-2-(2-propenyl)-3-(tributylstannyl)methylcyclopentanone (trans-14). Following the general procedure for the ring expansion, $84 \mathrm{mg}(0.23 \mathrm{mmol})$ of the cis-substrate 13 , upon reaction with $0.33 \mathrm{~mL}(0.94 \mathrm{mmol})$ of $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ and $142 \mathrm{mg}(0.94 \mathrm{mmol})$ of CsF in 1.7 mL of DMF, afforded, after 2 h of reaction at room temperature, 25 mg (25\%) of the Michael adduct 13 and 24 mg (24\%) of the product trans-14. These compounds were purified by preparative thin-layer chromatography (hexane/EtOAc 20:1). 13: IR (neat) 2956, 2924, $1732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.68-0.83(\mathrm{~m}, 7 \mathrm{H}), 0.87-$ $0.92(\mathrm{~m}, 9 \mathrm{H}), 1.00-1.05(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.32(\mathrm{~m}, 6 \mathrm{H}), 1.43-1.50$ $(\mathrm{m}, 6 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.17(\mathrm{~m}, 3 \mathrm{H}), 2.43-2.48(\mathrm{~m}, 2 \mathrm{H})$, $2.67-2.68(\mathrm{~m}, 1 \mathrm{H}), 3.01-3.13(\mathrm{~m}, 1 \mathrm{H}), 5.53-5.54(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.74,12.04,13.73,23.77,26.31,27.46,29.24,41.08$, 41.93, 48.03, 123.37, 136.86, 215.52; ${ }^{119} \mathrm{Sn}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-12.449$; MS $m / z 428\left(\mathrm{M}^{+}\right), 403,387,289 ;$ EI-HRMS $m / z$ calcd for $\mathrm{C}_{17} \mathrm{H}_{31^{-}}$ OSn 371.1397, found 371.1412. trans-14: IR (neat) 2956, 2926, 1734, $1638 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.89-0.94(\mathrm{~m}, 15 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H})$, $1.30-1.37(\mathrm{~m}, 6 \mathrm{H}), 1.47-1.53(\mathrm{~m}, 6 \mathrm{H}), 1.66(\mathrm{dd}, J=7.7,12.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.85$ (dd, $J=7.7,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-2.07$ (m, 2 H ), 2.14$2.22(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J=6.9,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{ddd}, J=2.8$, $7.7,19.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.96-5.05(\mathrm{~m}, 2 \mathrm{H}), 5.67-5.75(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.43,13.64,21.43,23.25,27.51,29.28,37.71,37.88,41.97$, 51.90, 117.60, 133.98, 221.76; ${ }^{119} \mathrm{Sn}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-21.204 ; \mathrm{MS}$ $m / z 371\left(\mathrm{M}^{+}-\mathrm{Bu}\right), 177,84$; EI-HRMS $m / z$ calcd for $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{OSn}$ ( $\mathrm{M}^{+}-$allyl) 387.1710, found 387.1708.
( $2 S^{*}, 3 S^{*}$ )-2-Methyl-2-(2-propenyl)-3-(tributylstannyl)methylcyclopentanone (cis-14). Following the general procedure for the ring expansion, $119 \mathrm{mg}(0.33 \mathrm{mmol})$ of the trans-12, upon reaction with $0.46 \mathrm{~mL}(1.33 \mathrm{mmol})$ of $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ and $202 \mathrm{mg}(1.33 \mathrm{mmol})$ of CsF in 2.4 mL of DMF, afforded, after 2 h of reaction at room temperature, $72.2 \mathrm{mg}(51 \%)$ of cis-14. This compound was purified by flash column chromatography (hexane/EtOAc 30:1, 10:1, 3:1 as gradient elution): IR (neat) 2956, 2926, 1736, $1638 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.87-$ $0.92(\mathrm{~m}, 15 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 1.29-1.37(\mathrm{~m}, 6 \mathrm{H}), 1.46-1.52(\mathrm{~m}, 6$ H), 1.86-1.95 (m, 2 H), 2.01 (dd, $J=8.7,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-2.09$ $(\mathrm{m}, 2 \mathrm{H}), 2.35(\mathrm{dd}, J=6.9,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=6.1,13.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.98-5.04(\mathrm{~m}, 2 \mathrm{H}), 5.56-5.64(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $9.37,13.62,23.96,24.08,27.52,29.29,32.63,39.48,41.61,51.95$, $117.84,134.73,222.93 ;{ }^{119} \mathrm{Sn} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-21.352$; MS m/z 371 $\left(\mathrm{M}^{+}-\mathrm{Bu}\right), 291,235,177,121$; EI-HRMS m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{OSn}$ ( $\mathrm{M}^{+}$- allyl) 387.1710, found 387.1682.

Ring Expansion to Cyclooctenone. (Z)-1,1,6-Trimethyl-4-meth-ylidene-6-cyclooten-3-one (cis-18a): IR (neat) 2958, 2930, 2866, 1688 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)\left(-50{ }^{\circ} \mathrm{C}\right) \delta 0.95(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}$, $3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{dd}, J=8.3,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~d}, J=11.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=7.8,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.58(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 5.42(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.69(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 205.78$, 148.26, 136.43, 123.41, 120.17, 53.24, 39.80, 38.95, 37.35, 32.17, 25.07, 23.36; MS m/z $178\left(\mathrm{M}^{+}\right), 163,122,94,79 ;$ EI-HRMS $m / z$ calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O} 178.1358$, found 178.1372 .
(Z)-1,1,6-Trimethyl-4-(tributylstannyl)methyl-6-cyclooten-3one (cis-19a). IR (neat) 2954, 2924, 2870, 2852, $1698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.80-0.91(\mathrm{~m}, 16 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{dd}, J$ $=5.9,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 1.27-1.32(\mathrm{~m}, 6 \mathrm{H}), 1.43-1.48$ (m, 6 H$), 1.74(\mathrm{dd}, J=9.1,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{br} \mathrm{d}$, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{dd}, J=9.1,13.1$
$\mathrm{Hz}, 1 \mathrm{H}), 2.54(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.65-2.71(\mathrm{~m}, 1 \mathrm{H}), 5.34(\mathrm{br} \mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta 8.26,9.49,10.77,12.62,13.62,24.00,27.56,28.99,36.52$, $37.05,40.76,49.68,53.76,123.56,137.79,214.42 ;{ }^{119} \mathrm{Sn}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100.55 \mathrm{MHz}) \delta-9.3$; MS m/z $470\left(\mathrm{M}^{+}\right), 413,251,235,177,161$; EI-HRMS $m / z$ calcd for $\mathrm{C}_{24} \mathrm{H}_{46} \mathrm{OSn} 470.2571$, found 470.2562 .
(E)-1,1,6-Trimethyl-4-methylidene-6-cyclooten-3-one (trans-18a): IR (neat) 2956, 2932, 2870, 1722, $1684 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 1.02(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.88$ (s, 3 H), 1.86-1.89 (m, 1 H), $2.23(\mathrm{dd}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dd}$, $J=12.6,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{br} \mathrm{d}, J=$ $12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, 5.39 (ddd, $J=1.5,1.5,12.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ $\delta 211.66,156.91,135.04,128.02,110.36,53.50,48.76,43.83,42.17$, 33.21, 26.09, 17.49; MS m/z $178\left(\mathrm{M}^{+}\right), 163,149,122,94,79$; EIHRMS $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}$ 178.1358, found 178.1353.
(Z)-4-Methyl-2-methylidene-4-cycloocten-1-one (cis-18b): IR (neat) 2932, 2856, 1690, $1616 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.63(\mathrm{br}$ $\mathrm{s}, 3 \mathrm{H}), 1.69-1.78(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.62(\mathrm{~m}, 2$ H), $3.12(\mathrm{~s}, 2 \mathrm{H}), 5.06(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{ddd}, J=1.0,8.0$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ $\delta 207.29,149.42,136.00,125.79,118.51,42.44,36.82,28.63,27.93$, 22.47; MS m/z $150\left(\mathrm{M}^{+}\right), 135$; EI-HRMS $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}$ 150.1044, found 150.1040 .
(Z)-4-Methyl-2-(tributylstannyl)methyl-4-cycloocten-1-one (cis19b): IR (neat) $2954,2926,2854,1704 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 0.84-0.92(\mathrm{~m}, 16 \mathrm{H}), 1.01(\mathrm{dd}, J=5.7,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.26-$ $1.34(\mathrm{~m}, 6 \mathrm{H}), 1.44-1.55(\mathrm{~m}, 7 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.78(\mathrm{~m}, 1 \mathrm{H})$, $1.88(\mathrm{dd}, J=3.9,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{ddd}, J=$ $2.9,7.4,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{t}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.74(\mathrm{~m}, 1$ H), 2.69 (ddd, $J=3.3,11.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 216.86,137.13,125.32,53.80,37.60$, $36.99,29.14,27.54,27.37,26.38,23.73,13.64,11.76,9.51 ;{ }^{119} \mathrm{Sn}$ NMR $\left(\mathrm{CDCl}_{3}, 100.55 \mathrm{MHz}\right) \delta-9.3 ; \mathrm{MS} \mathrm{m} / z 413\left(\mathrm{M}^{+}-\mathrm{Bu}\right), 235,177$, 161; EI-HRMS $m / z$ calcd for $\mathrm{C}_{24} \mathrm{H}_{46} \mathrm{OSn} 470.2571$, found 470.2562 .
( $E$ )-4-Methyl-2-methylidene-4-cycloocten-1-one (trans-18b): IR (neat) 2934, 1690, 1632, $1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ 1.90 (s, 3 H ), 2.09-2.25 (m, 3 H ), 2.27-2.36 (m, 2 H ), 2.31 (ddd, J $=5.4,12.2,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{br} \mathrm{d}, J$ $=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.18 (br d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 17.67$, 28.77, 31.42, 41.40, 48.94, 108.96, 129.08, 133.74, 156.59, 214.71; MS m/z $150\left(\mathrm{M}^{+}\right), 124,109,43$; EI-HRMS m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}$ 150.1044, found 150.1030 .
(4Z,6Z)-1,1,6-Trimethyl-4-acetoxyethylidene-6-cyclooctene-3one (cis-18c): IR (neat) 2958, 2932, 1742, 1684, $1232 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)\left(-50^{\circ} \mathrm{C}\right) \delta 0.94(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3$ H), $1.80(\mathrm{dd}, J=8.3,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~d}, J=11.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.42(\mathrm{dd}, J=8.3,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.65(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=$ $5.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)\left(-50^{\circ} \mathrm{C}\right) \delta 205.78,171.16,142.26,136.41$, $131.55,123.65,62.69,53.67,39.85,39.01,37.88,32.33,25.02,23.30$, 21.16; MS m/z $235\left(\mathrm{M}^{+}-\mathrm{Me}\right), 208,190$, 43; HRMS (FAB) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}\left(\mathrm{M}^{+}+1\right)$ 251.1647, found 251.1666.
(4Z,6E)-1,1,6-Trimethyl-4-acetoxyethylidene-6-cyclooctene-3one (trans-18c): IR (neat) 2956, 2934, 1742, 1684, $1232 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.03(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~d}, J=$ $12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{dd}, J=3.5,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~s}$, $3 \mathrm{H}), 2.21(\mathrm{dd}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~d}$, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{br} \mathrm{d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.31$ (ddd, $J=2.1$, $6.0,13.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.37 (ddd, $J=0.9,8.1,13.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.28 (ddd, $J=2.1,6.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{br} \mathrm{d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 211.12,170.55,151.37,134.39,127.88,118.49$, $61.24,53.74,49.10,43.25,41.63,32.92,25.95,20.80,17.11$; MS m/z $250\left(\mathrm{M}^{+}\right), 235,208,190,152,137,107,91,43$; EI-HRMS m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3} 250.1569$, found 250.1586 .

Isomerization of trans-Cyclooctenone to cis-Cyclooctenone. The trans-cyclooctenone 18a ( $14.5 \mathrm{mg}, 0.08 \mathrm{mmol}$ ) reacted with 80 mL $(0.24 \mathrm{mmol})$ of silylstannane and $36.5 \mathrm{mg}(0.24 \mathrm{mmol})$ of CsF in 0.5 mL of DMF at room temperature for 6.5 h . After workup of the reaction
mixture and purification by preparative thin-layer chromatography (hexane/Et2O 50:1), 6.2 mg ( $17 \%$ ) of the trans-19a was isolated, together with $19.0 \mathrm{mg}(51 \%)$ of the isomerized cis-19a. trans-19a: IR (neat) 2932, 1738, 1684, $1232 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ 0.78 (t, $J=8.2 \mathrm{~Hz}, 6 \mathrm{H}$ ), $0.82(\mathrm{dd}, J=6.8,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 9 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{dd}, J=8.0,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.13$ $(\mathrm{s}, 3 \mathrm{H}), 1.25-1.33(\mathrm{~m}, 6 \mathrm{H}), 1.42-1.47(\mathrm{~m}, 6 \mathrm{H}), 1.60(\mathrm{~d}, \mathrm{~J}=12.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.85(\mathrm{dd}, J=3.4,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H})$, $2.18(\mathrm{dd}, J=12.5,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.33$ $(\mathrm{dd}, J=5.0,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.21$ $(\mathrm{m}, 1 \mathrm{H}), 5.19(\mathrm{br} \mathrm{d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ $\delta 1.02,9.41,10.97,13.74,18.11,26.37,27.43,29.20,33.35,40.78$, $41.81,51.91,54.29,125.85,137.18,217.34 ;{ }^{119} \mathrm{Sn}$ NMR $\left(\mathrm{CDCl}_{3}, 100.55\right.$ $\mathrm{MHz}) \delta-12.0$; MS m/z 413 ( $\mathrm{M}^{+}$- Bu), 235, 177, 161; EI-HRMS $m / z$ calcd for $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{OSn}\left(\mathrm{M}^{+}-\mathrm{Bu}\right) 413.1867$, found 413.1888.

The isolated Michael adduct trans-19a ( $100 \mathrm{mg}, 0.21 \mathrm{mmol}$ ) reacted further with $0.22 \mathrm{~mL}(0.64 \mathrm{mmol})$ of $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ and 97 mg of CsF ( 0.64 mmol ) in 1.9 mL of DMF. After 7 h of reaction time at room temperature, 95 mg of a mixture of trans-19a and cis-19a was obtained, in the ratio of $1: 3.16$, determined by ${ }^{1} \mathrm{H}$ NMR, which corresponds to $76 \%$ of isomerization.

Ring Expansion of Chiral (+)-trans-17c. The chiral substrate ( + )-trans-17c ( $200 \mathrm{mg}, 0.42 \mathrm{mmol}$ ) reacted with $0.30 \mathrm{~mL}(0.85 \mathrm{mmol})$ of $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ and $129 \mathrm{mg}(0.85 \mathrm{mmol})$ of CsF in 3.0 mL of DMF at room temperature for 2 h and 50 min , resulting in $24.5 \mathrm{mg}(31 \%)$ of the cyclooctenone $(+)$-trans- $\mathbf{1 8 c}\left([\alpha]^{27}{ }_{\mathrm{D}}+292.7\left(c 0.980, \mathrm{CHCl}_{3}\right)\right.$, other spectral data consistent with the racemic cyclooctenone).

Ring Expansion of Chiral ( - -trans-17c. The chiral substrate $(-)$ -trans-17c (252 mg, 0.53 mmol$)$ reacted with $0.37 \mathrm{~mL}(1.07 \mathrm{mmol})$ of $\mathrm{Me}_{3} \mathrm{SiSnBu}_{3}$ and $162 \mathrm{mg}(1.07 \mathrm{mmol})$ of CsF in 3.8 mL of DMF at room temperature for 2 h and 50 min , resulting in $40 \mathrm{mg}(30 \%)$ of the cyclooctenone $(-)$-trans $-18 \mathrm{c}\left([\alpha]^{28}{ }_{\mathrm{D}}-285.8\left(c \quad 1.170, \mathrm{CHCl}_{3}\right)\right.$, other spectral data consistent with the racemic cyclooctenone).
( $\boldsymbol{R}$ )-MTPA Ester 28. To a solution of $31.5 \mathrm{mg}(71.87 \mathrm{mmol})$ of the secondary alcohol 26 in 1 mL of dichloromethane were added 4.4 mg $(35.93 \mathrm{mmol})$ of DMAP and $24.4 \mathrm{mg}(118.58 \mathrm{mmol})$ of DCC. The solution was cooled to $0^{\circ} \mathrm{C}$, and $25.2 \mathrm{mg}(107.80 \mathrm{mmol})$ of $(+)$-MTPA was added. The mixture was stirred at room temperature for 3 days, quenched with ammonium chloride, and extracted with ethyl acetate. The crude product was purified by silica gel column chromatography (hexane/EtOAc $5: 1$ ), and $31 \mathrm{mg}(67 \%)$ of the $(R)$-MTPA ester was isolated: IR (neat) $2988,1742,1738 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.97$ $(\mathrm{s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 2 \mathrm{H}), 1.60(\mathrm{dd}, J=11.6$, $12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{dd}, J=4.6,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~d}$, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.79$ (ddd, $J=7.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.83 (ddd, $J=5.4,7.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.92$ (ddd, $J=7.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{ddd}, J=5.4,7.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.54$ $(\mathrm{dd}, J=5.8,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=5.8,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{dd}$, $J=4.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.41(\mathrm{~m}, 3 \mathrm{H})$, 7.54-7.55 (m, 2 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 15.71,20.90,26.79,30.20$, 33.30, 38.51, 40.69, 46.82, 48.02, 55.56, 62.50, 63.92, 69.27, 78.57, $83.94(\mathrm{q}, J=28 \mathrm{~Hz}), 104.97,111.95,123.32(\mathrm{q}, J=288 \mathrm{~Hz}), 127.07$, $128.33,129.52,132.28,132.40,165.56,170.56 ; \mathrm{MS} \mathrm{m} / z 654\left(\mathrm{M}^{+}\right)$, 527, 421, 189; EI-HRMS m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{IO}_{7} \mathrm{~F}_{3} 654.1302$, found 654.1304.
( $\boldsymbol{S}$ )-MTPA 28. To a solution of 35.3 mg ( 80.5 mmol ) of the secondary alcohol 26 in 1.2 mL of dichloromethane was added 13.0 $\mathrm{mL}(35.93 \mathrm{mmol})$ of pyridine. The solution was cooled to $0^{\circ} \mathrm{C}$, and $22.6 \mathrm{~mL}(120.80 \mathrm{mmol})$ of $(-)$-MTPA-Cl was added. The mixture was stirred at room temperature for 3 days, quenched with brine, washed with $10 \% \mathrm{HCl}$ solution, and extracted with ethyl acetate. The crude product was purified by silica gel column chromatography (hexane/ EtOAc $5: 1$ ), and 25 mg ( $48 \%$ ) of the ( $S$ )-MTPA ester was isolated: IR (neat) $2954,1742 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.94(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}$, $3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 2 \mathrm{H}), 1.49(\mathrm{dd}, J=11.5,13.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.69(\mathrm{dd}, J=4.5,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{dd}, J=0.6,14.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{ddd}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.84$ (ddd, $J=5.4,7.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.92$ (ddd, $J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.02$ (ddd, $J=5.4,7.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{dd}, J=5.8,13.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.59(\mathrm{dd}, J=5.8,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=4.5,11.5 \mathrm{~Hz}, 1$ H), $5.66(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.52-7.54(\mathrm{~m}, 2$
$\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 15.87,20.89,26.93,30.13,33.19,38.15,40.69$, $46.75,48.40,55.31,62.57,63.91,69.28,78.82,84.75(\mathrm{q}, J=27 \mathrm{~Hz})$, 104.92, 112.04, 120.43 (q, $J=288 \mathrm{~Hz}), 127.56,128.44,129.57,131.65$, 132.54, 165.78, 170.59; MS m/z $654\left(\mathrm{M}^{+}\right), 527,421,189$; EI-HRMS $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{IO}_{7} \mathrm{~F}_{3}$ 654.1302, found 654.1282.

Supporting Information Available: Experimental procedures for the synthesis of $\mathbf{6 a - d}, \mathbf{1 0}$, cis- and trans- $\mathbf{1 1}$ and $\mathbf{- 1 2 ,}$
cis- and trans-16a-e, 17a-c, $(2 R, 3 S)$ - and $(2 S, 3 R)-\mathbf{2 0}-\mathbf{2 7}$ and $(+)-$ and $(-)-\mathbf{1 7} \mathbf{c},{ }^{1} \mathrm{H}$ NMR spectra for cis-18a and trans-18a, and cis-18a at $-50^{\circ} \mathrm{C}$. This material is available free of charge via the Internet at http://pubs.acs.org.


[^0]:    (1) (a) Petasis, N.; Patane, M. A. Tetrahedron 1992, 48, 5757 and references therein. (b) Ayanogulo, E.; Gebreyesus, T.; Beechan, C.; Djerassi, C, Tetrahedron 1979, 35, 1035. (c) Schitz, F.; Hollenbeak, K. H.; Vanderah, D. J. Tetrahedron 1978, 34, 2719. (d) Fenical, W.; Shulte, G. R.; Finer, J.; Clardy, J. J. Org. Chem. 1978, 43, 3628.
    (2) (a) Kinney, W. A.; Coghlan, M. J.; Paquette, L. A. J. Am. Chem. Soc. 1984, 106, 6868. (b) Kinney, W. A.; Coghlan, M. J.; Paquette, L. A. J. Am. Chem. Soc. 1985, 107, 7352.
    (3) Paquette, L. A.; Liang, S.; Galatsis, P. Synth. Lett. 1990, 663.
    (4) (a) Tamborski, C.; Soloski, E. J. J. Org. Chem. 1963, 28, 237. (b) Schumann, H.; Ronecker, S. Z. Naturforsch. B 1967, B22, 452. (c) Chenard, B. L.; Van Zyl, C. M. J. Org. Chem. 1986, 51, 3561.
    (5) (a) Azizian, H.; Eaborn, C.; Pidcock, A. J. Organomet. Chem. 1981, 215, 49. (b) Kosugi, M.; Ohya, T.; Migita, T. Bull. Chem. Soc. Jpn. 1983, 56, 3539. (c) Mitchell, T. N.; Killing, H.; Dicke, R.; Wickenkamp, R. J. Chem. Soc., Chem. Commun. 1985, 354. (d) Mitchell, T. N.; Wickenkamp, R.; Amamria, A.; Dicke, R.; Schneider, U. J. Org. Chem. 1987, 52, 4868. (e) Murakami, M.; Morita, Y.; Ito, Y. J. Chem. Soc., Chem. Commun. 1990, 428. (f) Murakami, M.; Amii, H.; Takizawa, N.; Ito, Y. Organometallics 1993, 12, 4223. (g) Hada, M.; Tanaka, Y.; Ito, M.; Murakami, M.; Amii, H.; Ito, Y.; Nakatsuji, H. J. Am. Chem. Soc. 1994, 116, 8754. (h) Casson, S.; Kocienski, P.; Reid, G.; Smith, N.; Street, J. M.; Webster, M. Synthesis 1994, 1301. (i) Murakami, M.; Yoshida, T.; Kawanami, S.; Ito, Y. J. Am. Chem. Soc. 1995, 117, 6408. (j) Ito, Y.; Bando, T.; Matsuura, T.; Ishikawa, M. J. Chem. Soc., Chem. Commun. 1986, 980. (k) Tsuji, Y.; Obora, Y. J. Am. Chem. Soc. 1991, 113, 9368. (1) Lipshutz, B. H.; Reuter, D. C.; Ellsworth, E. L. J. Org. Chem. 1989, 54, 4975. (m) Chenard, B. L.; Laganis, E. D.; Davidson, F.; RajanBabu, T. V. J. Org. Chem. 1985, 50, 3666. (n) Obora, Y.; Tsuji, Y.; Asayama, M.; Kawamura, T. Organometallics 1993, 12, 4697.

[^1]:    (10) (a) San Filippo, J., Jr.; Silberman, J. J. Am. Chem. Soc. 1982, 104, 2831. (b) Ashby, E. C.; DePriest, R. J. Am. Chem. Soc. 1982, 104, 6144.
    (11) (a) Mitsunobu, O.; Yamada, M. Bull. Chem. Soc. Jpn. 1967, 40, 2380. (b) Mitsunobu, O. Synthesis 1981, 1.

[^2]:    (12) (a) Ziegler, K.; Wilms, H. Justus Liebigs Ann. Chem. 1950, 567, 1. (b) Cope, A. C.; Pike, R. I.; Spencer, C. F. J. Am. Chem. Soc. 1953, 75, 3212.

[^3]:    (13) Isomerization preferably occurs with trans-18 rather than trans-19; because trans-19a was never obtained as a product from the reaction mixture, it was rationalized that, in the presence of an excess amount of stannyl anions, trans-18a first isomerizes to cis-18a, which then undergoes a conjugated addition, leading to cis-19a.
    (14) (a) Cope, A. C.; Ganelin, C. R.; Johnson, H. W., Jr.; Van Auken, T. V.; Winkler, J. S. J. Am. Chem. Soc. 1963, 85, 3276. (b) Cope, A. C.; Mehta, A. S. J. Am. Chem. Soc. 1964, 86, 5626. (c) Cope, A. C.; Pawson, B. A. J. Am. Chem. Soc. 1965, 87, 3649. (d) Bach, R. D.; Mazur, U.; Hamama, I.; Lauderback, S. K. Tetrahedron 1963, 28, 1955. (e) Manor, P. C.; Shoemaker, D. P.; Parkes, P. S. J. Am. Chem. Soc. 1970, 92, 5260.
    (15) (a) Coke, J. L.; Cooke, M. P., Jr.; Mourning, M. C. Tetrahedron Lett. 1968, 18, 2247. (b) Reese, C. B.; Shaw, A. J. Am. Chem. Soc. 1970, 92, 2566. (c) Whitham, G. H.; Wright, M. J. Chem. Soc. (c) 1971, 886. (d) Prior, M. J.; Whitham, G. H. J. Chem. Soc., Perkin Trans. 1 1986, 683. (e) Vedejs, E.; Snoble, K. A. J.; Fuchs, P. L. J. Org. Chem. 1973, 38, 3561. Synthesis by photoisomerization of cis-cyclooctene: (f) Swenton, J. S. J. Org. Chem. 1969, 34, 3217. (g) Deyrup, J. A.; Betkouski, M. J. Org. Chem. 1972, 37, 3561. (h) Inoue, Y.; Takamuku, S.; Sakurai, H. Synthesis 1977, 111.
    (16) (a) Corey, E. J.; Shulman, J. I. Tetrahedron Lett. 1968, 33, 3655. (b) Aratani, T.; Nakanishi, Y.; Nozaki, H. Tetrahedron 1970, 26, 4339. (c) Newton, P. F.; Whitham, G. H. J. Chem. Soc., Perkin Trans. 1 1979, 3072.

[^4]:    (17) Tsunoda, T.; Suzuki, M.; Noyori, R. Tetrahedron Lett. 1980, 21,

[^5]:    (18) Sen, S.; Roach, S. L.; Boggs, J. K.; Ewing, G. J.; Magrat, J. J. Org. Chem. 1997, 62, 6684.
    (19) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092.

